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Summary 

A tube model is presented which provides a surprisingly good 
description of the simple extension and compression behavior of a 
cross-linked rubber, while remaining conceptually and 
mathematically simple. 

Introduction 

The use of an analogy to the Einstein model of solids to account 
for the entanglement constraints on a chain in a polymeric solid 
has been proposed (EDWARDS 1967). The chain is restr icted to a 
tubelike region with a strain invariant, harmonic well potential 
acting latera l ly  to the center l ine of the tube. I t  has been out 
(de GENNES 1974) that while the Edwards tube is soft, allowing a 
chain to build up loops extending out of the nominal tube region, 
i t  is mathematically equivalent to a hard, impenetrable tube. He 
also suggested that the tube cross section deforms af f ine ly ,  
rather than remaining constant. 

The harmonic potential concept has been applied (EDWARDS 1977) to 
a network chain, which is a chain having i ts  ends separated and 
attached to cross-links or junction points. Taking a network 
chain, a 'primitive path' is defined as the shortest path between 
the cross-links that does not violate any topological constraints 
on the chain. The segments of the chain are divided into two 
populations; those lying along the primitive path and those in the 
'surplus population'. The surplus segment population makes 
'excursions' by executing a three dimensional random walk. In the 
walk, one dimension is along the primitive path and two dimensions 
are orthogonal to the path and subject to the tubelike harmonic 
potential. Under deformation, the end-to-end separation of the 
real chain, and therefore the primitive path length, increases. 
This requires the transfer of chain segments from the surplus 
population to the path population. The remaining surplus 
population again executes a random walk while subject to the same 
harmonic potential, i . e . ,  in the same 'potential pipe', as in the 
undeformed state. The entropy of deformation of the network chain 
is given by the difference between the entropy of the surplus 
population chain in the deformed state and the entropy of the 
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surplus population chain in the undeformed state. The model has 
two parameters: ~, which is a measure of the primit ive path 
length re lat ive to the chain contour length and; p, which is a 
measure of the number of entanglements re lat ive to the number of 
cross-links in the network. The potential pipe model fa i l s  
because i t  makes two incorrect predictions: a catastrophic stress 
rise in extension and a rapid stress fa l l  in compression on a 
Mooney-Rivlin type stress-strain plot (GOTTLIEB et a] 1981). The 
extension catastrophe occurs, according to Edwards, not as a 
result of the f i n i t e  ex tens ib i l i t y  of the chain, but as a result 
of the continuing depletion of the surplus population with 
increasing extension unt i l  the excursions are f i na l l y  
extinguished. The potential pipe model assumes that the tube 
which confines the surplus population has a strain invariant cross 
section. Modifying the model so that the tube diameter deforms 
af f ine ly  does not unfortunately, prevent the catastrophic stress 
rise from occuring. 

An alternative tube model, in which the entire network chain is 
enveloped within a tube and both the chain and the tube deform was 
recently proposed (GAYLORD 1979) and subsequently modified 
(MARRUCCI 1981). 

The Mode] 

The free energy of confining a Gaussian network chain, having n 
segments and end-to-end separation l ,  in either a soft tube 
(MARRUCCI 1981) or a hard tube (GAYLORD 1979) having cross 

2 sectional area a , has two terms: The free energy term 
representing the end-to-end separation of the chain has the usual 
Gaussian form 

2 l 
a ~-- (1) 
g n 

The free energy term representing the confinement of the chain 
within the tube is 

n 
A c ~ (2) 

a 

(There is also a free energy term representing the mobility of the 
chain ends, Aj~ In a, which wi l l  not be considered, herein.) 

Although the chain free energy expressions derived by Gaylord and 
by Marrucci are ident ical ,  thei r  depiction of the tube dimensions 
and of the network d i f fe r .  Gay]ord's hard tube has a square cross 
section and is i n f i n i t e l y  long. His network is a three-tube 
network, with each tube aligned along one of the principal 
directions of strain. Marrucci's soft tube has a circu]ar cross 
section and extends only to the chain ends, where i t  is 
penetrable. His network is comprised of randomly oriented tubes. 
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Assuming that the network chains deform af f ine ly ,  Gaylord and 
Marrucci both find that for simple extension or compression, the 
chain end separation term gives the classical Gaussian free energy 
and stress results, 

Ag(X) ~ (X2+ 2X - I )  (3) 

�9 g ~ (X - X -2) (4) 

Assuming that the tubes deform af f ine ly ,  as Gaylord does and as 
Marrucci does in one case, A and ~c for simple extension or 
compression have the form c 

Ac(X ) ~ (X -2 + 2X) (5) 

~c ~ (1 - X -3) ~ (X - X-2)-(Z -1) (6) 

Marrucci also considers an alternative assumption about the change 
in the tube dimensions with deformation: the tube length deforms 
af f ine ly  while the tube cross section remains circular and deforms 

in such a way that the tube volume remains constant; i . e . ,  (a21) 
is strain invariant. In th is case, A and ~ for simple extension 

c c or compression, go as 

Ac(k ) ~ (X2 + 2 k - l )  1/2 (7) 

~c ~ ( 2 + 2 -1)  -1 /2  . (X - X -2) (8) 

We have made a Mooney-R iv l in  type s t r e s s - s t r a i n  p l o t  o f  the sum of  
eqs . (4 )  and (8 ) ,  a d j u s t i n g  the  c o e f f i c i e n t s  o f  these terms so as 
to  f i t  the t h e o r e t i c a l  curve to  the exper imenta l  data at  X = 1 and 
2. The curve is  shown in the  accompanying f i g u r e .  The Marrucc i  
curve shows the very undes i reab |e  f e a t u r e  of  r a p i d l y  dropping w i t h  

i n c r e a s i n g  ~-1 in compress ion,  in much the  same way as the  Edwards 
model curve (we note t ha t  a cor respond ing  p l o t  o f  the  sum of  

eqs . (4 )  and (6) r i s e s  w i th  i n c r e a s i n g  X- I  in compress ion,  which i s  
a lso u n s a t i s f a c t o r y ) .  In ana lyz ing  the  Marrucc i  d e r i v a t i o n ,  we 

have found t h a t  he uses, <l> = <12> 1/2 This r e l a t i o n s h i p  i s  
mathemat i ca l l y  unsound. 

We have incorporated the constant tube volume assumption into the 
Gaylord three-hard tube model because the model is a simple but 
satisfactory way to represent the network and i t s  use enables us 
to avoid having to make any mathematical assumptions and 
approximations of the type used by Marrucci. We redefine the 
hard tube so that i t  extends only to the ends of the chain and we 
assume that in deformation, the tube length deforms af f ine ly  
while the tube cross section remains square and changes so as to 
conserve the volume of the tube. The resulting A c and ~c 
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expressions for simple extension or compression are 

Ac(X ) ~ (X + 2X - 1 / 2 )  (9) 

~c ~ (1 - X -3/2) (10) 

In the accompanying f igure, we have graphed the sum of eqs.(4) and 
(10) in a Mooney-Rivlin type stress-strain plot ,  adjusting the 
coeff icients of these terms so as to f i t  the theoretical curve to 
the experimental data at X = 1 and 2. The Gaylord curve is 
clearly a great improvement over the Marrucci curve. 

I t  must be noted that the constant tube volume assumption carries 
with i t ,  the assumption that defect chains, i . e . ,  loops, dangling 
ends and sol chains, do not contribute to the equilibrium elast ic 
response of a rubber, i f  after the imposition of a strain,  the 
end-to-end separations of these chains eventually relax back to 
the i r  unperturbed values. This view contrasts with our previous 
stance on the matter (GAYLORD 1979), which was based on the 
postulate that the tube dimensions vary with the macroscopic 
deformation but are independent of the dimensions of the chain 
which the tube encompasses. The postulate, in turn, arose from 
the idea that there is no constraint re]ease mechanism operating 
in a cross-linked network. This issue merits further 
consideration. 
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Figure 1. Mooney-Rivlin stress-strain curves predicted by tube 
models which employ the constant tube volume 
assumption 
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